
www.manaraa.com

Downsizing Data Management for Embedded Systems

Gunter Saake1, Marko Rosenmüller1, Norbert Siegmund1, Christian Kästner1, Thomas Leich2

1School of Computer Science, University of Magdeburg, Germany
{saake,rosenmue,siegmund,ckaestne}@ovgu.de

2METOP Research Institute, Magdeburg, Germany
leich@metop.de

Abstract

Data management functionality is not only needed in
large scale database management systems, but also in em-
bedded systems that are the predominant form of comput-
ing systems today. However, resource restrictions and het-
erogeneity of hardware complicate the development of data
management solutions. In current practice, this typically
leads to redevelopment of data management solutions since
existing applications cannot be customized sufficiently. In
this paper we describe our vision of tailor-made data man-
agement, based on a software product line approach, where
data management software can be tailored to satisfy spe-
cial requirements. We illustrate how such a software prod-
uct line for data management functionality can be derived
by downsizing existing database systems.

1 Introduction

Traditionally, data management functionality is dis-
cussed in the context of large scale database management
systems (DBMS) like Oracle, IBM DB2, or Microsoft SQL
Server. Modern challenges often arise in the area of very
large database systems; however, in recent years database
management has also shown increasingly important for
embedded devices.

Today, 98 % of all computing systems are embedded sys-
tems [37]. They are used in cars, cell phones, washing ma-
chines, TV sets, and many other things of daily use. Visions
of pervasive and ubiquitous computing [40] emphasize the
importance of embedded systems also for the future. What
makes these systems special and challenging for data man-
agement are two factors. First, embedded devices provide
only few resources. They usually have a comparably low
computing power and restricted memory to save production
costs and energy consumption. Second, embedded systems
are strongly heterogenous, meaning that they differ severly

in hardware and software. Software for these systems is
usually implemented specifically for a single system.

At the same time, embedded systems have to deal
with an increasing amount of data to process information
collected by sensors, cameras, or microphones. Appli-
cations for these systems have different requirements on
data management, ranging from simple data storage over
stream processing to complex data management, e.g., using
transactions, recovery, and replication. A general data
management infrastructure is the basis for separating data
management and application logic [21]. There are several
challenges for data intensive applications in embedded
systems as we will illustrate by the example of automotive
systems. For new application scenarios data management
is often reinvented to satisfy computational and memory
restrictions as well as new requirements [11]. This practice
leads to an increased time to market, high development
costs, and poor quality of software. Considering the limited
resources and special requirements on data management,
traditional DBMS are not suited for embedded environ-
ments. The main reasons are memory requirements and
limited customizability [34, 10]. Thus, new techniques
have to be employed to support the development of highly
customizable data management applications that can be
used in resource constrained environments and allow reuse
of developed code in different solutions.

In this paper, we present means to model and implement
tailor-made data management using software product lines
(SPL). We also show how an approach for downsizing ex-
isting data management systems can be applied. We illus-
trate first results and a perspective for further work on tailor-
made data management.

2 Data Management in Resource Con-
strained Environments

In the following, we present a short overview of the spe-
cial data management requirements of embedded systems



www.manaraa.com

to motivate the resulting need for tailor-made data manage-
ment solutions.

2.1 Embedded Systems

There are many important issues that limit the compu-
tational power of embedded systems. While Moore’s Law
says that the number of transistors doubles every 2 years and
computation power is commonly assumed to double every
18 months, at the same time power consumption increases
with an increasing number of transistors. In automobiles
this is a more severe problem since the total number of elec-
tronic control units per car increases and so does the overall
power consumption of automobiles. In different environ-
ments additional problems arise, for example, sensor net-
works might be powered by batteries which also demand
minimal power consumption. Another important factor are
costs of embedded systems especially in mass production.
Both, power consumption and production costs, encourage
to use the smallest and cheapest possible computation units
in growing environments like automobiles despite the posi-
tive effects of Moore’s Law.

The importance of data management increases in many
domains where embedded systems are used. The resource
constraints of embedded systems today are comparable to
the constraints in desktop or server systems many years ago.
These also provided only limited memory but there was still
a need for data management functionality. At the moment
this trend is continued with ubiquitous computing [40] and
in the future perhaps with smart dust [39]. It is only limited
by physical laws [18] and can be formulated as the law of
scale invariance of data management:

There will be always small computing devices
that operate with very constrained resources, and
independent of the size of these systems there is
a need for dedicated data management function-
ality.

Thus data management for resource constrained devices
will also be needed in the future.

2.2 The Need for Tailor-made Data Management

The data management functionality that is needed for
embedded systems varies for nearly every application sce-
nario. As a motivating example, consider a modern pas-
senger car which nowadays has over 100 electronic control
units installed. The tasks of these systems strongly vary,
from navigation systems, over a driver’s logbook and total
distance recorder, to devices that simply measures the num-
ber of revolutions. In all these cases we need some data
management functionality, e.g., we need to store data per-
sistently. However, we do not always need the full func-
tionality of a large scale database management system like

Oracle. In Table 1 we present some possible applications
and the needed data management functionality.

What we observe is that data management comes in
many variants. We often need typical data management
components like storage management, transactions, query
processing, or recovery with equivalent or similar imple-
mentations. However, we rarely ever need all functional-
ity in one system and we sometimes need different imple-
mentations for the same functionality optimized for differ-
ent purposes, e.g., optimized for performance, low energy
consumption, low working memory, or minimal footprint
size.

Considering the diverse hardware and special application
scenarios, the needed data management functionality differs
for most systems. A solution can be tailor-made software
that supports high variability which is provided by a product
line approach, as known from other industries.

3 Software Product Lines

Most data management systems have a monolithic archi-
tecture to meet the high requirements on performance [11,
17]. Consequently, appropriate techniques are needed to de-
velop tailor-made DBMS that do not degrade performance
in exchange for customizability. This is even more im-
portant for embedded devices where resource restrictions
do not allow any functionality overhead. Customization of
software can be achieved by using software product lines
(SPL) which allow for composing software solutions tai-
lored to a specific problem.

The basic idea of SPLs is to develop software based on
their features. These features represent functional require-
ments on a software that are of interest to the stakehold-
ers [23]. Software development based on features was ap-
plied successfully in different domains [1, 5, 7, 6, 29, 15, 13,
19, 38, 41]. These case studies show that customizability of
software can be achieved with the SPL approach.

3.1 Domain Modeling

Typically, the SPL development process consists of
domain analysis, design, implementation, and configura-
tion [16]. The first step, Feature-Oriented Domain Anal-
ysis [23], concentrates on the analysis of features of a do-
main to support their reuse. Different relevant concerns re-
lated to an SPL are integrated into one domain or feature
model. A feature diagram is a hierarchical representation
of all features of a feature model. Features in an SPL can be
mandatory or optional [23] and may have relations to other
features, e.g., two features can be alternative or conjunctive.
Products of an SPL are derived in the configuration phase
by selecting a subset of the available features and variants



www.manaraa.com

System Persistence Recovery Consistence Queries Granularity

navigation system x x SQL database
driver’s logbook x xx x cursor tables
total distance recorder x x xx fetch tuple
number of revolutions recorder (min, max) x int

Table 1. Data management in a car

of features. To enforce correctness of a configured prod-
uct, there have to be additional constraints to overcome the
restrictions of the hierarchical representation [25].

Figure 1 depicts a sample feature diagram of an SPL of
a DBMS. The diagram consists of the base concept DBMS
as the root node and additional nodes that represent the fea-
tures of the product line. Features are arranged in a tree-
like form and can have subfeatures to specialize their par-
ent features or can be children of a grouping feature. The
feature diagram shows that only the STORAGE MANAGER
has to be configured for every product. The OPTIMISTIC
transactions feature cannot occur in the same product with
PESSIMISTIC transactions. Feature TRANSACTION further-
more requires an optional sub-feature of STATISTICS that
further decreases the number of possible variants of the
SPL.

Figure 1. Feature diagram of a DBMS product
line.

3.2 Implementing Software Product Lines

Currently, there are different approaches to implement
software product lines. The most prominent are the use of
preprocessor statements, as found in C/C++, and compo-
sition of product lines using components and frameworks.
Both approaches have benefits but also some deficiencies.

Preprocessors. Using preprocessor statements is a well
known technique to achieve customizability and often em-
ployed when implementing software for embedded systems.
In Figure 2 we show an excerpt of the C source code of
Berkeley DB1, a database engine that can be embedded

1http://www.oracle.com/database/berkeley-db/db

into client applications. In this example, preprocessor state-
ments are placed within methods to achieve customizabil-
ity. The use of preprocessor statements is known to degrade
readability of the source code and to complicate mainte-
nance of a software [33]. Because of missing modulariza-
tion also the evolution of software and even the elimination
of dead features is problematic [9]. However, preprocessor
statements are often used since they do not degrade perfor-
mance and allow to produce tailor-made applications.

1 static int __rep_queue_filedone(dbenv, rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 #ifndef HAVE_QUEUE
6 COMPQUIET(rep, NULL);
7 COMPQUIET(rfp, NULL);
8 return (__db_no_queue_am(dbenv));
9 #else

10 db_pgno_t first, last;
11 u_int32_t flags;
12 int empty, ret, t_ret;
13 #ifdef DIAGNOSTIC
14 DB_MSGBUF mb;
15 #endif
16 // over 100 lines of additional code
17 #endif
18 }

Figure 2. Code excerpt of Berkeley DB.

Components. Also components and frameworks can be
used to develop SPLs and to attain customizability of
DBMS [17, 20, 34]. However, components have a prob-
lem regarding granularity and performance. They usually
implement coarse-grained modules that represent multiple
features. Fine-grained customization is not possible without
performance degradation because of the needed overhead
to manage components [11]. Furthermore, the crosscutting
structure of some features (e.g., transaction management of
a DBMS affects many parts of the system) prohibits the use
of components in many situations [30]. Those crosscutting
concerns are part of and interact with many other compo-
nents and thus cannot be modularized in a single compo-
nent. The result is an overhead not suitable for embedded
systems, or a degradation of configuration possibilities and
therefore a loss of customizability.



www.manaraa.com

3.3 Discussion

The analysis shows that neither preprocessors, nor com-
ponents and frameworks are appropriate for implementing
fine-grained SPLs for embedded systems.

Most data management systems have a monolithic ar-
chitecture that meets the high requirements on perfor-
mance [11, 17]. Consequently, appropriate techniques
are needed to develop tailor-made DBMS that do not de-
grade performance when implementing customizable solu-
tions. The techniques that are of interest for embedded sys-
tems also have to provide fine-grained customizability, clear
modularization, and appropriate support for reuse and main-
tenance of developed software.

4 Lightweight Software Product Line Imple-
mentations

Feature-oriented programming (FOP) [8, 31] and
aspect-oriented programming (AOP) [23] are new program-
ming paradigms that are promising for implementing SPLs
with respect to these requirements. In contrast to compo-
nents, FOP and AOP also support modularization of cross-
cutting features.

FOP treats the features of software as basic elements of
the whole development process. It allows to compose a
family of similar programs based on the features of a do-
main. Features are increments in functionality. Technically,
features implement program transformations that add new
code to programs implemented in feature modules [8]. By
composing a base program with a set of features (succes-
sively applying the program transformations) it is possible
to derive different variants of the application. It is also pos-
sible to implement variants of a single feature to later select
between specialized solutions optimized for different con-
cerns. In contrast to object-oriented software development,
this combination of a modular approach and code transfor-
mation allows to freely compose feature modules.

AOP also decomposes software with respect to their fea-
tures. It has successfully been applied to operating sys-
tems [14, 13, 28] and middleware [42, 15]. These studies
show that AOP is appropriate to decompose infrastructure
software with respect to crosscutting features. The evalu-
ations furthermore show that AOP can be used with negli-
gible impact on performance and resource consumption, as
long as no dynamic mechanisms are employed.

Both, FOP and AOP, allow to statically compose soft-
ware using specialized compilers, e.g., AHEAD2 and As-
pectJ3. Some studies have shown that AOP and FOP are
similar approaches [1, 26, 4] and both have benefits as well

2http://www.cs.utexas.edu/˜schwartz/
3http://www.eclipse.org/aspectj/

as deficiencies and can be combined [3]. In the following,
we concentrate on FOP since we argue that it is more ap-
propriate for implementing SPLs [3, 1, 24]. However, most
of the presented concepts apply to AOP and FOP.

4.1 FeatureC++

With FeatureC++ [2, 3] we developed an FOP language
extension for the C++ programming language. It supports
static composition and allows to apply FOP to software sys-
tems intended for resource constrained environments.

FeatureC++ uses a code transformation to C++ to benefit
from compilers that exist for most computing systems. C++
is often considered to provide poor performance and high
resource consumption. According to Stroustrup, however,
there is no evidence for this argument [35]:

Contrary to popular myths, there is no more tol-
erance of time and space overheads in C++ than
there is in C. The emphasis on run-time perfor-
mance varies more between different communi-
ties using the languages than between the lan-
guages themselves. In other words, overheads are
found in some uses of the languages rather than
in the language features.

FeatureC++ furthermore uses method inlining to avoid a
performance degradation for methods that are decomposed
with respect to features. Though, when using C++, or Fea-
tureC++, it has to be considered that complex mechanisms
(e.g., exception handling, virtual methods) can introduce an
overhead. All in all, performance is equivalent to prepro-
cessor implementations, but FeatureC++ allows to separate
features and to modularize the source code.

5 Downsizing Data Management

Developing downsized data management solutions for
embedded systems that contain only and exactly the func-
tionality required can be achieved using software product
line concepts with FOP. Different implementations of the
same features can be used to optimize the system for dif-
ferent concerns and to adapt the software for different hard-
ware platforms.

There are different approaches to create an SPL for em-
bedded data management. One possibility is to design an
SPL from scratch, starting with domain analysis and imple-
menting and testing the required features. Figure 3 shows
an excerpt from a feature diagram of a storage manager
(gray features contain sub-features not shown) [27]. This
feature diagram makes use of a fine-grained decomposition
and thus allows high customizability.

Alternatively, instead of starting from scratch, we also
decomposed existing data management systems. Therefore,



www.manaraa.com

Storage Manager

Integrity Check

Storage Organisation

Array List ... Sequential Hash ...

Main Memory

Files

Index ...Data

Records

Fix Variable

Caching Physical Access Method

File Direct

Page Based Non Page Based

Buffer Manager

Data Type

Access Path

Primary Secondary

...LookupUpdateInsert Delete

Exact Range

B*-Tree ...

Freespace Mgr. Primary
Storage Mgr.

Secondary
Storage Mgr.

File

Integer String ...

Figure 3. Feature diagram of a storage man-
ager (excerpt).

we started with an existing, tested, and optimized data man-
agement system and incrementally decomposed features to
create variability. After decomposing all relevant features,
we got a stripped-down version that only contains the com-
mon functionality, while all features can be added when re-
quired for a certain use case. This approach, also known
as extractive adoption model [12], has several advantages.
First, by starting with an existing application we can reuse
tested and already highly tuned code. Second, the required
effort and risk are lower which makes this especially at-
tractive for companies that want to adopt software product
line technology for their products. Finally, this allows us to
compare the downsized versions with the original applica-
tion which makes it useful as a research benchmark.

In one case study we decomposed the C version of the
embedded database engine Berkeley DB [32]. Even though
Berkeley DB is already fairly small (484 KB footprint) and
already allows few static configuration options using pre-
processors in it’s original implementation, it is still too large
for deeply embedded devices and contains several features
like TRANSACTION MANAGEMENT that might not be re-
quired in all use cases. Therefore, we first transformed the
Berkeley DB code from C to C++ and then decomposed
it into features using FeatureC++. For decomposition we
used behavior preserving refactorings, to maintain the orig-
inal tested and tuned behavior.

Our case study has shown that the transformation from C
to FeatureC++ (1) has no negative impact on performance
or resource consumption, (2) successfully increases cus-
tomizability so that we are able to create fare more variants
that are specifically tailored to a use case, and (3) success-
fully decreases binary size in specialized configurations by

1 complete configuration 5 without Queue

2 without Crypto 6 minimal C version using B-tree

3 without Hash 7 minimal FeatureC++ version using B-tree

4 without Replication 8 minimal FeatureC++ version using Queue

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

Configuration

B
in

a
ry

 s
iz

e
 [

k
B

]

C

FeatureC++

Figure 4. Binary size of different C and Fea-
tureC++ variants of Berkeley DB.

removing unneeded functionality to satisfy the tight mem-
ory limitations of small embedded systems.

The results are summarized in Figures 4 and 5. Be-
fore the refactoring the binary size of Berkeley DB embed-
ded into a benchmark application was between about 400
and 650 KB, depending on the configuration (1–6). After
transformation from C to FeatureC++ we could slightly de-
crease the binary size (Fig. 4) while maintaining the origi-
nal performance (Fig. 5). By decomposing additional fea-
tures that were not already customizable with preprocessors
we even allow to derive configurations that are smaller and
faster if those additional features are not required in a cer-
tain use case (Configurations 7 and 8 in Fig. 4 and 5).

This shows the practical relevance of downsizing data
management for embedded systems. Already the decompo-
sition of Berkeley DB, an existing application, has shown
the benefits. By modeling and implementing a data manage-
ment product line for embedded systems from scratch we
could provide an even finer-grained and more customize-
able solution that can be used even in deeply embedded sys-
tems, e.g., on a small and cheap sensor inside a car.

6 Perspective

We have seen how SPLs and FOP can be applied to cre-
ate highly customizable data management solutions. But
there are still several open issues regarding the application
of FOP to DBMS development.

6.1 Granularity of Features

Features are the building blocks of software when using
FOP. At the moment there is less known about an appro-
priate granularity for decomposing DBMS when applying



www.manaraa.com

1 complete configuration 5 without Queue

2 without Crypto 6 minimal C version using B-tree

3 without Hash 7 minimal FeatureC++ version using B-tree

4 without Replication

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7

Configuration

M
io

. 
q

u
e
ri

e
s
 /
 s

C

FeatureC++

Figure 5. Performance comparison (Oracle
benchmark) of C and FeatureC++ variants for
different feature selections. Configuration 8
was omitted since it uses a different index
structure.

FOP. While FOP supports an arbitrary fine-grained decom-
position this might be counterproductive for DBMS devel-
opment.

If considering DBMS for embedded systems there are
many possible features. A finer grained decomposition of
a DBMS, e.g., by using data types as features or further
decomposition of index structures, is possible. This is es-
sential to derive very small DBMS that are to be used in
deeply embedded systems. However, there is also a disad-
vantage: By increasing the number of features it becomes
more difficult to derive a specific program as more deci-
sions are required. Already with 33 independent optional
features, it is possible to create a program variant for ev-
ery person on the planet. Additionally, the development
overhead (not performance-relevant runtime overhead) for
managing features increases and as features are not always
independent there will be an increasing amount of feature
interactions that need to be handled.

We propose that the granularity should depend on the
field of application that defines requirements on perfor-
mance, resource consumption, and maintenance. Thus in
embedded systems also small sized features are of interest
and even smaller features if deeply embedded systems are
the destined environment. But more research is needed to
identify the appropriate granularity for different application
scenarios.

6.2 DBMS Architecture

DBMS architectures have to anticipate constantly chang-
ing requirements and are thus still under consideration [21].
Using feature-oriented concepts can help to achieve cus-
tomizability of DBMS by introducing variability into the
underlying architecture. Based on this variability different
variants of architectures can be generated.

The analysis of relevant features in the DBMS domain
and their interactions is a basic requirement for the devel-
opment of tailor-made DBMS for embedded systems. But
few attempts have been made to identify relevant features
in the DBMS domain [27]. Based on a detailed domain
analysis and the selection of a granularity of decomposition
an appropriate architecture of DBMS for use in embedded
systems can be developed. Furthermore, it has to be deter-
mined if a single architecture can cover the whole domain of
embedded systems or if different architectures are needed.
In order to derive such an appropriate architecture expert
knowledge in the DBMS domain and further case studies
are needed.

6.3 Application to SQL

The Structured Query Language (SQL) grows with ev-
ery new standard and supports a lot of features while only
a small subset is used by applications. With the release of
SQL3 even traditional DBMS do not support the complete
functionality of the standard. With Structured Card Query
Language (SCQL) [22] a standard was released that sup-
ports functionality specialized for use in smart cards. This
shows that SQL is not the appropriate solution for every use
case.

A decomposition of SQL (the standard itself, the parser,
etc.) with a feature-oriented approach might be a solution to
solve the complexity problems. This results in a family of
SQL dialects which could satisfy the requirements of differ-
ent application scenarios. In [36] we have shown that such
a decomposition is possible and a family of customizable
SQL parsers can be automatically generated from a decom-
posed grammar. Using SQL in embedded systems could be
based on such a dialect of the SQL standard and different
dialects might be used for different applications. In order to
derive a complete tailor-made DBMS that processes only a
concrete SQL dialect, a customizable query optimizer and a
customizable underlying DBMS have to be developed.

7 Conclusion

In this paper, we have shown how to customize and
downsize DBMS to provide tailor-made data management
for embedded systems. We propose to use an SPL approach
and FOP to generate specialized DBMS based on a common



www.manaraa.com

architecture. The fine-grained customizability supported by
FOP is the basis for tailoring DBMS to satisfy the resource
constraints of embedded systems. We have also shown that
there are many open issues and also problems with FOP.
These should be in the focus of future research to optimize
the implementation techniques for SPLs in general and for
tailor-made data management for embedded systems as spe-
cial application.

Acknowledgments

Marko Rosenmüller and Norbert Siegmund are funded
by German Ministry of Education and Research (BMBF),
project number 01IM08003C. The presented work is part
of the projects FAME-DBMS4 and ViERforES5.

References

[1] S. Apel and D. Batory. When to Use Features and
Aspects? A Case Study. In Proceedings of the Inter-
national Conference on Generative Programming and
Component Engineering, pages 59–68. ACM Press,
2006.

[2] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.
FeatureC++: On the Symbiosis of Feature-Oriented
and Aspect-Oriented Programming. In Proceedings
of the International Conference on Generative Pro-
gramming and Component Engineering, pages 125–
140. Springer, 2005.

[3] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Lay-
ers: Aspects and Features in Concert. In Proceedings
of the International Conference on Software Engineer-
ing, pages 122–131. ACM Press, 2006.

[4] S. Apel, C. Lengauer, D. Batory, B. Möller, and
C. Kästner. An Algebra for Feature-Oriented Software
Development. Technical Report MIP-0706, Depart-
ment of Informatics and Mathematics, University of
Passau, 2007.

[5] D. Batory, L. Coglianese, M. Goodwin, and S. Shafer.
Creating Reference Architectures: An Example from
Avionics. In Proceedings of the Symposium on Soft-
ware Reusability, pages 27–37. ACM Press, 1995.

[6] D. Batory, C. Johnson, B. MacDonald, and
D. v. Heeder. Achieving Extensibility Through
Product-Lines and Domain-Specific Languages: A
Case Study. ACM Transactions on Software Engineer-
ing and Methodology, 11(2):191–214, 2002.

4http://fame-dbms.org
5http://vierfores.de

[7] D. Batory and S. O’Malley. The Design and Im-
plementation of Hierarchical Software Systems with
Reusable Components. ACM Transactions on Soft-
ware Engineering and Methodology, 1(4):355–398,
1992.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on Soft-
ware Engineering, 30(6):355–371, 2004.

[9] I. D. Baxter and M. Mehlich. Preprocessor Condi-
tional Removal by Simple Partial Evaluation. In Pro-
ceedings of the Working Conference on Reverse En-
gineering, pages 281—290. IEEE Computer Society,
2001.

[10] C. Bobineau, L. Bouganim, P. Pucheral, and P. Val-
duriez. PicoDMBS: Scaling Down Database Tech-
niques for the Smartcard. In Proceedings of the Inter-
national Conference on Very Large Data Bases, pages
11–20. Morgan Kaufmann, 2000.

[11] S. Chaudhuri and G. Weikum. Rethinking Database
System Architecture: Towards a Self-Tuning RISC-
Style Database System. In Proceedings of the Inter-
national Conference on Very Large Data Bases, pages
1–10. Morgan Kaufmann, 2000.

[12] P. Clements and C. Krueger. Point/counterpoint: Be-
ing proactive pays off/eliminating the adoption barrier.
IEEE Software, 19(4):28–31, 2002.

[13] Y. Coady and G. Kiczales. Back to the Future:
A Retroactive Study of Aspect Evolution in Operat-
ing System Code. In Proceedings of the Interna-
tional Conference on Aspect-Oriented Software De-
velopment, pages 50–59. ACM Press, 2003.

[14] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn.
Using AspectC to Improve the Modularity of Path-
Specific Customization in Operating System Code. In
Proceedings of the European Software Engineering
Conference, pages 88–98. ACM Press, 2001.

[15] A. Colyer and A. Clement. Large-Scale AOSD for
Middleware. In Proceedings of the International Con-
ference on Aspect-Oriented Software Development,
pages 56–65. ACM Press, 2004.

[16] K. Czarnecki and U. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-
Wesley, 2000.

[17] K. R. Dittrich and A. Geppert. Component
Database Systems: Introduction, Foundations, and
Overview. In Component Database Systems, pages 1–
28. dpunkt.Verlag, 2001.



www.manaraa.com

[18] R. P. Feynman. There’s Plenty of Room at the Bottom.
In Feynman and Computation: Exploring the Limits of
Computers, pages 63–76. Perseus Books, 1998.

[19] A. F. Garcia, C. Sant’Anna, C. Chavez, V. T. da Silva,
C. J. P. de Lucena, and A. von Staa. Separation of Con-
cerns in Multi-Agent Systems: An Empirical Study.
In Software Engineering for Large-Scale Multi-Agent
Systems, pages 49–72. Springer, 2003.

[20] A. Geppert, S. Scherrer, and K. R. Dittrich. KIDS:
Construction of Database Management Systems based
on Reuse. Technical Report ifi-97.01, Department of
Computer Science. University of Zurich, 1997.

[21] T. Härder. DBMS Architecture – Still an Open Prob-
lem. In Datenbanksysteme in Business, Technologie
und Web, pages 2–28, 2005.

[22] International Organization for Standardization (ISO).
Part 7: Interindustry Commands for Structured Card
Query Language (SCQL). In Identification Cards –
Integrated Circuit(s) Cards with Contacts, ISO/IEC
7816-7, 1999.

[23] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peter-
son. Feature-Oriented Domain Analysis (FODA) Fea-
sibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon Uni-
versity, 1990.

[24] C. Kästner, S. Apel, and D. Batory. A Case Study Im-
plementing Features Using AspectJ. In Proceedings of
the International Software Product Line Conference,
pages 223–232, 2007.

[25] C. H. P. Kim and K. Czarnecki. Synchronizing
Cardinality-Based Feature Models and Their Special-
izations. In European Conference on Model Driven
Architecture Foundations and Applications, pages
331–348, 2005.

[26] M. Kuhlemann, M. Rosenmüller, S. Apel, and T. Le-
ich. On the Duality of Aspect-Oriented and Feature-
Oriented Design Patterns. In AOSD Workshop on As-
pects, Components, and Patterns for Infrastructure
Software, 2007.

[27] T. Leich, S. Apel, and G. Saake. Using Step-Wise
Refinement to Build a Flexible Lightweight Storage
Manager. In Proceedings of the East-European Con-
ference on Advances in Databases and Information
Systems, pages 324–337. Springer, 2005.

[28] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and
W. Schröder-Preikschat. A Quantitative Analysis of
Aspects in the eCos Kernel. In Proceedings of the

International EuroSys Conference, pages 191–204.
ACM Press, 2006.

[29] R. Lopez-Herrejon and D. Batory. From Crosscutting
Concerns to Product Lines: A Function Composition
Approach. Technical Report TR-06-24, University of
Texas at Austin, 2006.

[30] D. Nyström, A. Tešanović, M. Nolin, C. Norström,
and J. Hansson. COMET: A Component-Based Real-
Time Database for Automotive Systems. In Proceed-
ings of the Workshop on Software Engineering for Au-
tomotive Systems, pages 1–8. IEEE Computer Society,
2004.

[31] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming, vol-
ume 1241 of Lecture Notes in Computer Science,
pages 419–443. Springer, 1997.

[32] M. Rosenmüller, N. Siegmund, H. Schirmeier, J. Sin-
cero, S. Apel, T. Leich, O. Spinczyk, and G. Saake.
FAME-DBMS: Tailor-made Data Management Solu-
tions for Embedded Systems. In EDBT’08 Workshop
on Software Engineering for Tailor-made Data Man-
agement (SETMDM), pages 1–6, Mar. 2008.

[33] H. Spencer and G. Collyer. Ifdef Considered Harmful,
or Portability Experience With C News. In Proceed-
ings of the USENIX Summer 1992 Technical Confer-
ence, pages 185–197, 1992.

[34] M. Stonebraker and U. Cetintemel. One Size Fits All:
An Idea Whose Time Has Come and Gone. In Pro-
ceedings of the International Conference on Data En-
gineering, pages 2–11, 2005.

[35] B. Stroustrup. C and C++: Siblings. The C/C++ Users
Journal, 20(7):28–36, 2002.

[36] S. Sunkle, M. Kuhlemann, N. Siegmund,
M. Rosenmüller, and G. Saake. Generating Highly
Customizable SQL Parsers. In Workshop on Software
Engineering for Tailor-made Data Management
(SETMDM), pages 29–33, 2008.

[37] D. Tennenhouse. Proactive Computing. Communica-
tions of the ACM, 43(5):43–50, 2000.

[38] S. Trujillo, D. Batory, and O. Diaz. Feature Refac-
toring a Multi-Representation Program into a Prod-
uct Line. In Proceedings of the International Con-
ference on Generative Programming and Component
Engineering, pages 191–200. ACM Press, 2006.



www.manaraa.com

[39] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister.
Smart Dust: Communicating with a Cubic-Millimeter
Computer. Computer, 34(1):44–51, 2001.

[40] M. Weiser. Some Computer Science Issues in Ubiq-
uitous Computing. Communications of the ACM,
36(7):75–84, 1993.

[41] B. Xin, S. McDirmid, E. Eide, and W. C. Hsieh.
A Comparison of Jiazzi and AspectJ for Feature-
Wise Decomposition. Technical Report UUCS-04-
001, School of Computing, The University of Utah,
2004.

[42] C. Zhang and H.-A. Jacobsen. Quantifying Aspects
in Middleware Platforms. In Proceedings of the In-
ternational Conference on Aspect-Oriented Software
Development, pages 130–139. ACM Press, 2003.


